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Problem 1. Suppose f ∈ Lp(R). If there exists h ∈ Lp(R) such that

lim
y→0
‖y−1(f−y − f)− h‖p = 0,

we call h the strong Lp derivative of f and write h = df/dx. If f ∈ Lp(Rn), Lp

derivatives of f are defined similarly. If p and q are conjugate exponents, f ∈ Lp,
g ∈ Lq, and the Lp derivative ∂jf exists, then prove ∂j(f ∗ g) exists in the ordinary
sense and equals (∂jf) ∗ g.

Proof. Suppose f ∈ Lp(R) and h is the strong Lp derivative of f . Then by Prop
8.8 we have

‖y−1[(f ∗ g)−y − f ∗ g]− h ∗ g‖u = ‖[y−1(f−y − f)− h)] ∗ g‖u
≤ ‖y−1(f−y − f)− h)‖p‖g‖q → 0 as y → 0

So h ∗ g is the derivative of f ∗ g in the ordinary sense. Similar for f ∈ Lp(Rn). �

Problem 2. Let φ ∈ L1(Rn) satisfy |φ(x)| ≤ C(1 + |x|)−n−ε for some C, ε > 0,
and

∫
φ(x)dx = a. For t > 0, φt(x) = t−nφ

(
x
t

)
. If f ∈ Lp define the φ-maximal

function of f to be Mφf(x) = supt>0 |f ∗ φt(x)|. The Hardy-Littlewood maximal
function Hf is Mφ|f | where φ is the characteristic function of the unit ball, divided
by the volume of the ball. Show that there is a constant C, independent of f , such
that Mφf ≤ CHf .

Proof. On the region |y| ≤ t, we have |φt(y)| ≤ C
tn , therefore∫

|y|≤t
|f(x− y)| · |φt(y)|dy ≤ C

tn

∫
|y|≤t

|f(x− y)|dy

=
Cρ

m(B(0, t))

∫
|y|≤t

|f(x− y)|dy ≤ Cρ ·Hf(x)

where ρ = m(B(0, t))/tn is a constant depending only on n. On the region 2kt ≤
|y| ≤ 2k+1t, we have |φt(y)| ≤ C

tn · 2
−k(n+ε) = Cρ·2n−kε

m(B(0,2k+1t))
, therefore∫

2kt≤|y|≤2k+1t

|f(x− y)| · |φt(y)|dy ≤ Cρ · 2n−kε

m(B(0, 2k+1t))

∫
|y|≤2k+1t

|f(x− y)|dy

≤ Cρ · 2n−kε ·Hf(x)

Hence

Mφf ≤ (Cρ+

∞∑
k=0

Cρ2n−kε)Hf.
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Problem 3. Young’s inequality shows that L1 is a Banach algebra with convolution
as multiplication.

(1) If I is an ideal in the algebra L1, prove that its closure is, also.
(2) If f ∈ L1, the smallest closed ideal in L1 containing f is the smallest closed

subspace of L1 containing translates of f .

Proof. (1) It is clear Ī is a subspace since I is. Take any f ∈ Ī, g ∈ L1,
we can find fn ∈ I with fn → f in L1. Notice by Young’s inequality
‖fn ∗ g − f ∗ g‖1 ≤ ‖fn − f‖1 · ‖g‖1 therefore fn ∗ g → f ∗ g in L1, so
f ∗ g ∈ Ī. This proves Ī is an ideal.

(2) Let I, J denote the smallest closed ideal containing f and the smallest closed
subspace containing translate of f respectively. We note to show I ⊂ J , it
suffices to show f ∗g ∈ J for all g ∈ Cc, since a typical element in I is a limit
of linear combinations of functions of the form f ∗ g for some g ∈ Cc and
J is a closed subspace. For g ∈ Cc, f ∗ g(x) is approximated by Riemann
sum

∑
f(x − yj)g(yj)∆yj =

∑
τyjf(x)g(yj)∆yj , this means f ∗ g is a

pointwise limit of function
∑
τyjf(x)g(yj)∆yj ∈ J . To see this is also an L1

convergence, we notice |
∑
τyjfg(yj)∆yj | ≤

∑
|τyjf ||g(yj)|∆yj ≤ 2|f | ∗ |g|

since
∑
|τyjf ||g(yj)|∆yj converges to |f | ∗ |g| for sufficiently fine partitions,

then the L1 convergence follows from dominated convergence theorem. So
by closeness of J , we have f ∗ g ∈ J and thus I ⊂ J . On the other hand,
similarly to show J ⊂ I it suffices to check translations of f , τyf ∈ I.
But this is clear since τyf is the L1 limit of functions f ∗ τyφt ∈ I for any
approximate identity {φt}.

�

Problem 4. Show that if f ∈ L1(Rn), f is continuous at 0, and f̂ ≥ 0, then

f̂ ∈ L1.

Proof. Choose Φ ≥ 0 as in Theorem 8.35(c), and denote f t(x) =
∫
f̂(ξ)Φ(tξ)e2πiξ·xdξ.

Since f is continuous at 0, 0 is in the Lebesgue set of f , thus by Theorem 8.35(c)

we have lim
t→0

f t(0) = f(0). Since f̂ ≥ 0, by Fatou’s lemma

‖f̂‖1 =

∫
lim
t→0

f̂(ξ)Φ(tξ)dξ ≤ lim
t→0

∫
f̂(ξ)Φ(tξ)dξ = lim

t→0
f t(0) = f(0).

�

Problem 5. Let f be a function on T1 and Arf the rth Abel mean of the Fourier
series of f . Check that

(1) Arf = f ∗ Pr where Pr(x) =
∑∞
−∞ r|k|e2πikx is the Poisson kernel for T1.

(2) Pr(x) = 1−r2
1+r2−2r cos 2πx .

Proof. (1) This is direct.

f ∗ Pr(x) =

∫
f(y)

(∑
k

r|k|e2πik(x−y)dy =
∑
k

r|k|e2πikxf̂(k) = Arf(x).

(2) This is also direct.

Pr(x) =

∞∑
k=0

rke2πikx+

∞∑
k=1

rke−2πikx =
1

1− re2πix
+

re−2πix

1− re−2πix
=

1− r2

1− 2r cos(2πx) + r2
.
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Problem 6. Given f ∈ L1(T1), let Smf(x) =
∑m
−m f̂(k)e2πikx and

σmf(x) =

m∑
−m

f̂(k)

(
1− |k|

m+ 1

)
e2πikx.

Prove the following.

(1) σmf = 1
m+1

∑m
0 Skf .

(2) If Dk is the kth Dirichlet kernel, we have σmf = f ∗ Fm where Fm =
1

m+1

∑m
0 Dk. Fm is the mth Fejér kernel on T1.

(3) Fm(x) = sin2(m+1)πx
(m+1) sin2 πx

.

Proof. (1) We have

1

m+ 1

m∑
k=0

Skf(x) =
1

m+ 1

m∑
k=0

k∑
n=−k

e2πinx =
1

m+ 1

m∑
k=0

(m+ 1− |k|)e2πinx

=

m∑
k=0

(1− |k|
m+ 1

)e2πikx = σmf(x).

(2) We have

f ∗ Fm(x) =

∫
f(y)Fm(x− y)dy =

1

m+ 1

∫
f(y)

m∑
k=0

k∑
n=−k

e2πin(x−y)dy

=
1

m+ 1

m∑
k=0

k∑
n=−k

( ∫
f(y)e−2πikydy

)
e2πikx =

1

m+ 1

m∑
k=0

k∑
n=−k

f̂(k)e2πikx

=
1

m+ 1

m∑
k=0

Skf(x) = σmf(x).

(3) We have

Fm(x) =
1

m+ 1

m∑
k=0

Dk(x) =
1

m+ 1

m∑
k=0

sin(2k + 1)πx

sin(πx)

=
1

m+ 1

1

sin(πx)
Im
( m∑
k=0

e(2k+1)iπx
)

=
1

m+ 1

1

sin(πx)
Im
(
e(m+1)iπx sin((m+ 1)πx)

sin(πx)

)
=

1

m+ 1

sin2((m+ 1)πx)

sin2(πx)
.
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Problem 7. Prove the following.

(1) If Dm is the mth Dirichlet kernel, ‖Dm‖1 →∞ as m→∞.
(2) The Fourier transform is not surjective from L1(T1) to C0(Z).

Proof. (1) Notice |Dm(x)| ≥ 2m+1
kπ | sin((2m+ 1)πx)| for x ∈ ( k

2m+1 ,
k+1
2m+1 ), so∫ 1

0

|Dm| ≥
2m∑
k=0

2m+ 1

kπ

∫ k+1
2m+1

k
2m+1

| sin((2m+ 1)πx)| = 2

π2

2m∑
k=0

1

k + 1

m→∞−−−−→∞.
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(2) By Fourier inversion, F : L1(T1)→ C0(Z) is injective. If F was surjective,

then by open mapping theorem F−1 is bounded. However ‖F−1(D̂m)‖1 =

‖Dm‖1 →∞ as m→∞ whist ‖D̂m‖C0(Z) ≡ 1.
�


