PROBLEM SET 7

JIAHAO HU

Problem 1. Suppose f € LP(R). If there exists h € LP(R) such that
. -y - _
tim [y (77 = )~ hll, =0,

we call h the strong LP derivative of f and write h = df /dz. If f € LP(R™), LP
derivatives of f are defined similarly. If p and q are conjugate exponents, f € LP,
g € L1, and the L derivative 0, f exists, then prove 0;(f * g) exists in the ordinary
sense and equals (0;f) * g.

Proof. Suppose f € LP(R) and h is the strong L? derivative of f. Then by Prop
8.8 we have
Iy~ (f* )™ = frgl = hxgllu =Ny~ (F7 = f) = )] * gl
<y = 1) = Wlpllgly = 0 asy 0

So h* g is the derivative of f * ¢ in the ordinary sense. Similar for f € LP(R™). O

Problem 2. Let ¢ € L*(R™) satisfy |¢p(x)] < C(1+ |z[)~" for some C,e > 0,
and [ ¢(z)dx = a. Fort > 0, ¢y(z) = t7"¢ (%) If f € LP define the ¢p-maximal
function of f to be Myf(x) = sup,~q|f * ¢(z)|. The Hardy-Littlewood maximal
function H f is My|f| where ¢ is the characteristic function of the unit ball, divided
by the volume of the ball. Show that there is a constant C, independent of f, such
that My f < CHF.

Proof. On the region |y| < ¢, we have |¢,(y)| < &, therefore

c
r—y)| - |oe(y)|dy < — —ld
[ =il < 5 is =l
. Cp
- m(B((),t))/y§t|f($_y)dy§Cp-Hf(x)

where p = m(B(0,t))/t" is a constant depending only on n. On the region 2Ft <
on—ke
ly| < 28F1t, we have |¢(y)| < & - 27kt = %7 therefore
Cp . 277,7]()6
fa =)l oy < — s [ e = yldy
/2kt<|y|<2k+1t ! m(B(0,2811)) J iy 1<ak+1s
< Cp-2"7F - Hf(x)
Hence

Myf < (Cp+ > Cp2" *)HF.
k=0
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Problem 3. Young’s inequality shows that L' is a Banach algebra with convolution
as multiplication.

(1) If T is an ideal in the algebra L', prove that its closure is, also.
(2) If f € L, the smallest closed ideal in L' containing f is the smallest closed
subspace of L' containing translates of f.

Proof. (1) Tt is clear Z is a subspace since Z is. Take any f € Z,g € L%,
we can find f, € T with f, — f in L'. Notice by Young’s inequality
Ifaxg—=Fglli < Ifa = flli - llgl therefore f, x g — f+g in L', so
f*g €. This proves 7 is an ideal.

(2) Let I, J denote the smallest closed ideal containing f and the smallest closed
subspace containing translate of f respectively. We note to show I C J, it
suffices to show fxg € J for all g € C., since a typical element in [ is a limit
of linear combinations of functions of the form f * g for some g € C. and
J is a closed subspace. For g € C., f x g(z) is approximated by Riemann
sum - f(z — y;)9(y;)Ay; = 37y, f(2)g(y;)Ay;, this means f * g is a
pointwise limit of function Y- 7, f(x)g(y;)Ay; € J. To see this is also an L'
convergence, we notice | 3 7y, fg(y;)Ay;| < 37 |y, fllg(y;)|Ay; < 2|f] *|g]
since ) |7y, fll9(y;)| Ay, converges to | f|* |g| for sufficiently fine partitions,
then the L' convergence follows from dominated convergence theorem. So
by closeness of J, we have f x g € J and thus I C J. On the other hand,
similarly to show J C I it suffices to check translations of f, 7,f € I.
But this is clear since 7, f is the L' limit of functions f % 7,¢; € I for any
approximate identity {¢;}.

O
Problem 4. Show that if f € LY(R™), f is continuous at 0, and f > 0, then
feLt.
Proof. Choose ® > 0 as in Theorem 8.35(c), and denote f*(z) = [ F(6)®(t)e2miE e,

Since f is continuous at 0, 0 is in the Lebesgue set of f, thus by Theorem 8.35(c)
we have }ir% F1(0) = f(0). Since f > 0, by Fatou’s lemma
—

171 = [t Fe)ae)de < lim [ F©@(e€)de = lim 1'0) = £(0).

O

Problem 5. Let f be a function on T' and A, f the rth Abel mean of the Fourier
series of f. Check that

(1) Arf = f* P, where P.(z) = Y. _rlFle?™ke s the Poisson kernel for T*.
.2
(2) Pr(2) = 55 coszms
Proof. (1) This is direct.

x) = / F) (32 rblemibe=v) gy — $ plble2mibs fy — A, f(a).
k k

(2) This is also direct.

—2mix

1 re 1—7r2
k 27rsz k —27r1k'r
r r = . _ = .
Z +Z 1 — re2miz + 1—re=2m® 1 —2rcos(2rz) + 12
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Problem 6. Given f € L'(TY), let S, f(z) = 3.7 f(k)emihe
O_mf Z f < | ) 27mk:c
Prove the following.
(1) omf = mL_H Zgl Skf-
(2) If Dy is the kth Dirichlet kernel, we have op,f = f *x F,, where F,, =
ﬁ 0" Dy. Fy, is the mth Fejér kernel on T'.
sin?(m T
(3) Fin(w) = s
Proof. (1) We have
1 m k 1 m
2minx 2minx
- - 1|k
m+1zs’“f T 2 T 2 (m LIkl
k=0n=—k k=0
- k[ orike
=) (1———2)"* =g, f(x).
P m+1
(2) We have
m k
£ @) = [ 1Pl =iy = — [ 1) 30 37 ey
m+1 P
m k
_ 7271'2](7 2mikx R 2mikax
*m+1zz /f Ydy) e = 1zzf(k)6
k=0n=-—k k=0n=—k
1 m
—— Z Sif(@) = omf(x)
k=0
(3) We have
1 Ksin(2k + Dmx
F,, Dy (
m—i—lZ a m+1k2:o sin(mx)
m .
_ 1 _ 1 m(z e(2k+1)i7rx) _ 1 . 1 Im(e(erl)iﬂ'x Sm((f” + )mz
m + 1 sin(7z) P m + 1 sin(mz) sin(mwz)
1 sin?((m + 1)mz)
Com+1 sin?(rz)
O

Problem 7. Prove the following.

(1) If D, is the mth Dirichlet kernel, ||Dp,|l1 — oo as m — oo.
(2) The Fourier transform is not surjective from L(T') to Co(Z).

Proof. (1) Notice | Dy, ()| > 221 | sin((2m + 1)7z)| for x € (27f+1, 2’;;:1), S0

2m
2m + 1 2m+1 2 1 m— 00
/ ‘Dml > E o / . |sm((2m + 1)7T.T)| 7'('2 kg_o m — X

2m+1

))
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(2) By Fourier inversion, F : LY(T!) — Cy(Z) is injective. If F was surjective,
then by open mapping theorem F~! is bounded. However | F~1(D,,)||1 =

| D l1 — 00 as m — oo whist || Dy, ||y z) = 1.
(]



