PROBLEM SET 7

JIAHAO HU

Problem 1. Suppose $f \in L^{p}(\mathbb{R})$. If there exists $h \in L^{p}(\mathbb{R})$ such that

$$
\lim _{y \rightarrow 0}\left\|y^{-1}\left(f^{-y}-f\right)-h\right\|_{p}=0
$$

we call h the strong L^{p} derivative of f and write $h=d f / d x$. If $f \in L^{p}\left(\mathbb{R}^{n}\right), L^{p}$ derivatives of f are defined similarly. If p and q are conjugate exponents, $f \in L^{p}$, $g \in L^{q}$, and the L^{p} derivative $\partial_{j} f$ exists, then prove $\partial_{j}(f * g)$ exists in the ordinary sense and equals $\left(\partial_{j} f\right) * g$.

Proof. Suppose $f \in L^{p}(\mathbb{R})$ and h is the strong L^{p} derivative of f. Then by Prop 8.8 we have

$$
\begin{aligned}
\left\|y^{-1}\left[(f * g)^{-y}-f * g\right]-h * g\right\|_{u} & \left.=\|\left[y^{-1}\left(f^{-y}-f\right)-h\right)\right] * g \|_{u} \\
& \left.\leq \| y^{-1}\left(f^{-y}-f\right)-h\right)\left\|_{p}\right\| g \|_{q} \rightarrow 0 \quad \text { as } y \rightarrow 0
\end{aligned}
$$

So $h * g$ is the derivative of $f * g$ in the ordinary sense. Similar for $f \in L^{p}\left(\mathbb{R}^{n}\right)$.
Problem 2. Let $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfy $|\phi(x)| \leq C(1+|x|)^{-n-\epsilon}$ for some $C, \epsilon>0$, and $\int \phi(x) d x=a$. For $t>0, \phi_{t}(x)=t^{-n} \phi\left(\frac{x}{t}\right)$. If $f \in L^{p}$ define the ϕ-maximal function of f to be $M_{\phi} f(x)=\sup _{t>0}\left|f * \phi_{t}(x)\right|$. The Hardy-Littlewood maximal function $H f$ is $M_{\phi}|f|$ where ϕ is the characteristic function of the unit ball, divided by the volume of the ball. Show that there is a constant C, independent of f, such that $M_{\phi} f \leq C H f$.

Proof. On the region $|y| \leq t$, we have $\left|\phi_{t}(y)\right| \leq \frac{C}{t^{n}}$, therefore

$$
\begin{aligned}
\int_{|y| \leq t}|f(x-y)| \cdot\left|\phi_{t}(y)\right| d y & \leq \frac{C}{t^{n}} \int_{|y| \leq t}|f(x-y)| d y \\
& =\frac{C \rho}{m(B(0, t))} \int_{|y| \leq t}|f(x-y)| d y \leq C \rho \cdot H f(x)
\end{aligned}
$$

where $\rho=m(B(0, t)) / t^{n}$ is a constant depending only on n. On the region $2^{k} t \leq$ $|y| \leq 2^{k+1} t$, we have $\left|\phi_{t}(y)\right| \leq \frac{C}{t^{n}} \cdot 2^{-k(n+\epsilon)}=\frac{C \rho \cdot 2^{n-k \epsilon}}{m\left(B\left(0,2^{k+1} t\right)\right)}$, therefore

$$
\begin{aligned}
\int_{2^{k} t \leq|y| \leq 2^{k+1} t}|f(x-y)| \cdot\left|\phi_{t}(y)\right| d y & \leq \frac{C \rho \cdot 2^{n-k \epsilon}}{m\left(B\left(0,2^{k+1} t\right)\right)} \int_{|y| \leq 2^{k+1} t}|f(x-y)| d y \\
& \leq C \rho \cdot 2^{n-k \epsilon} \cdot H f(x)
\end{aligned}
$$

Hence

$$
M_{\phi} f \leq\left(C \rho+\sum_{k=0}^{\infty} C \rho 2^{n-k \epsilon}\right) H f .
$$

Problem 3. Young's inequality shows that L^{1} is a Banach algebra with convolution as multiplication.
(1) If \mathcal{I} is an ideal in the algebra L^{1}, prove that its closure is, also.
(2) If $f \in L^{1}$, the smallest closed ideal in L^{1} containing f is the smallest closed subspace of L^{1} containing translates of f.

Proof. (1) It is clear $\overline{\mathcal{I}}$ is a subspace since \mathcal{I} is. Take any $f \in \overline{\mathcal{I}}, g \in L^{1}$, we can find $f_{n} \in \mathcal{I}$ with $f_{n} \rightarrow f$ in L^{1}. Notice by Young's inequality $\left\|f_{n} * g-f * g\right\|_{1} \leq\left\|f_{n}-f\right\|_{1} \cdot\|g\|_{1}$ therefore $f_{n} * g \rightarrow f * g$ in L^{1}, so $f * g \in \overline{\mathcal{I}}$. This proves $\overline{\mathcal{I}}$ is an ideal.
(2) Let I, J denote the smallest closed ideal containing f and the smallest closed subspace containing translate of f respectively. We note to show $I \subset J$, it suffices to show $f * g \in J$ for all $g \in C_{c}$, since a typical element in I is a limit of linear combinations of functions of the form $f * g$ for some $g \in C_{c}$ and J is a closed subspace. For $g \in C_{c}, f * g(x)$ is approximated by Riemann $\operatorname{sum} \sum f\left(x-y_{j}\right) g\left(y_{j}\right) \Delta y_{j}=\sum \tau_{y_{j}} f(x) g\left(y_{j}\right) \Delta y_{j}$, this means $f * g$ is a pointwise limit of function $\sum \tau_{y_{j}} f(x) g\left(y_{j}\right) \Delta y_{j} \in J$. To see this is also an L^{1} convergence, we notice $\left|\sum \tau_{y_{j}} f g\left(y_{j}\right) \Delta y_{j}\right| \leq \sum\left|\tau_{y_{j}} f\right|\left|g\left(y_{j}\right)\right| \Delta y_{j} \leq 2|f| *|g|$ since $\sum\left|\tau_{y_{j}} f\right|\left|g\left(y_{j}\right)\right| \Delta y_{j}$ converges to $|f| *|g|$ for sufficiently fine partitions, then the L^{1} convergence follows from dominated convergence theorem. So by closeness of J, we have $f * g \in J$ and thus $I \subset J$. On the other hand, similarly to show $J \subset I$ it suffices to check translations of $f, \tau_{y} f \in I$. But this is clear since $\tau_{y} f$ is the L^{1} limit of functions $f * \tau_{y} \phi_{t} \in I$ for any approximate identity $\left\{\phi_{t}\right\}$.

Problem 4. Show that if $f \in L^{1}\left(\mathbb{R}^{n}\right), f$ is continuous at 0 , and $\hat{f} \geq 0$, then $\hat{f} \in L^{1}$.

Proof. Choose $\Phi \geq 0$ as in Theorem 8.35(c), and denote $f^{t}(x)=\int \hat{f}(\xi) \Phi(t \xi) e^{2 \pi i \xi \cdot x} d \xi$. Since f is continuous at 0,0 is in the Lebesgue set of f, thus by Theorem 8.35(c) we have $\lim _{t \rightarrow 0} f^{t}(0)=f(0)$. Since $\hat{f} \geq 0$, by Fatou's lemma

$$
\|\hat{f}\|_{1}=\int \lim _{t \rightarrow 0} \hat{f}(\xi) \Phi(t \xi) d \xi \leq \lim _{t \rightarrow 0} \int \hat{f}(\xi) \Phi(t \xi) d \xi=\lim _{t \rightarrow 0} f^{t}(0)=f(0)
$$

Problem 5. Let f be a function on \mathbb{T}^{1} and $A_{r} f$ the rth Abel mean of the Fourier series of f. Check that
(1) $A_{r} f=f * P_{r}$ where $P_{r}(x)=\sum_{-\infty}^{\infty} r^{|k|} e^{2 \pi i k x}$ is the Poisson kernel for \mathbb{T}^{1}.
(2) $P_{r}(x)=\frac{1-r^{2}}{1+r^{2}-2 r \cos 2 \pi x}$.

Proof. (1) This is direct.

$$
f * P_{r}(x)=\int f(y)\left(\sum_{k} r^{|k|} e^{2 \pi i k(x-y)} d y=\sum_{k} r^{|k|} e^{2 \pi i k x} \hat{f}(k)=A_{r} f(x)\right.
$$

(2) This is also direct.

$$
P_{r}(x)=\sum_{k=0}^{\infty} r^{k} e^{2 \pi i k x}+\sum_{k=1}^{\infty} r^{k} e^{-2 \pi i k x}=\frac{1}{1-r e^{2 \pi i x}}+\frac{r e^{-2 \pi i x}}{1-r e^{-2 \pi i x}}=\frac{1-r^{2}}{1-2 r \cos (2 \pi x)+r^{2}}
$$

Problem 6. Given $f \in L^{1}\left(\mathbb{T}^{1}\right)$, let $S_{m} f(x)=\sum_{-m}^{m} \hat{f}(k) e^{2 \pi i k x}$ and

$$
\sigma_{m} f(x)=\sum_{-m}^{m} \hat{f}(k)\left(1-\frac{|k|}{m+1}\right) e^{2 \pi i k x}
$$

Prove the following.
(1) $\sigma_{m} f=\frac{1}{m+1} \sum_{0}^{m} S_{k} f$.
(2) If D_{k} is the k th Dirichlet kernel, we have $\sigma_{m} f=f * F_{m}$ where $F_{m}=$ $\frac{1}{m+1} \sum_{0}^{m} D_{k} . F_{m}$ is the m th Fejér kernel on \mathbb{T}^{1}.
(3) $F_{m}(x)=\frac{\sin ^{2}(m+1) \pi x}{(m+1) \sin ^{2} \pi x}$.

Proof. (1) We have

$$
\begin{aligned}
\frac{1}{m+1} \sum_{k=0}^{m} S_{k} f(x) & =\frac{1}{m+1} \sum_{k=0}^{m} \sum_{n=-k}^{k} e^{2 \pi i n x}=\frac{1}{m+1} \sum_{k=0}^{m}(m+1-|k|) e^{2 \pi i n x} \\
& =\sum_{k=0}^{m}\left(1-\frac{|k|}{m+1}\right) e^{2 \pi i k x}=\sigma_{m} f(x)
\end{aligned}
$$

(2) We have

$$
\begin{aligned}
f * F_{m}(x) & =\int f(y) F_{m}(x-y) d y=\frac{1}{m+1} \int f(y) \sum_{k=0}^{m} \sum_{n=-k}^{k} e^{2 \pi i n(x-y)} d y \\
& =\frac{1}{m+1} \sum_{k=0}^{m} \sum_{n=-k}^{k}\left(\int f(y) e^{-2 \pi i k y} d y\right) e^{2 \pi i k x}=\frac{1}{m+1} \sum_{k=0}^{m} \sum_{n=-k}^{k} \hat{f}(k) e^{2 \pi i k x} \\
& =\frac{1}{m+1} \sum_{k=0}^{m} S_{k} f(x)=\sigma_{m} f(x)
\end{aligned}
$$

(3) We have

$$
\begin{aligned}
F_{m}(x) & =\frac{1}{m+1} \sum_{k=0}^{m} D_{k}(x)=\frac{1}{m+1} \sum_{k=0}^{m} \frac{\sin (2 k+1) \pi x}{\sin (\pi x)} \\
& =\frac{1}{m+1} \frac{1}{\sin (\pi x)} \operatorname{Im}\left(\sum_{k=0}^{m} e^{(2 k+1) i \pi x}\right)=\frac{1}{m+1} \frac{1}{\sin (\pi x)} \operatorname{Im}\left(e^{(m+1) i \pi x} \frac{\sin ((m+1) \pi x)}{\sin (\pi x)}\right) \\
& =\frac{1}{m+1} \frac{\sin ^{2}((m+1) \pi x)}{\sin ^{2}(\pi x)}
\end{aligned}
$$

Problem 7. Prove the following.
(1) If D_{m} is the mth Dirichlet kernel, $\left\|D_{m}\right\|_{1} \rightarrow \infty$ as $m \rightarrow \infty$.
(2) The Fourier transform is not surjective from $L^{1}\left(\mathbb{T}^{1}\right)$ to $C_{0}(\mathbb{Z})$.

Proof. (1) Notice $\left|D_{m}(x)\right| \geq \frac{2 m+1}{k \pi}|\sin ((2 m+1) \pi x)|$ for $x \in\left(\frac{k}{2 m+1}, \frac{k+1}{2 m+1}\right)$, so

$$
\int_{0}^{1}\left|D_{m}\right| \geq \sum_{k=0}^{2 m} \frac{2 m+1}{k \pi} \int_{\frac{k}{2 m+1}}^{\frac{k+1}{2 m+1}}|\sin ((2 m+1) \pi x)|=\frac{2}{\pi^{2}} \sum_{k=0}^{2 m} \frac{1}{k+1} \xrightarrow{m \rightarrow \infty} \infty
$$

(2) By Fourier inversion, $\mathcal{F}: L^{1}\left(\mathbb{T}^{1}\right) \rightarrow C_{0}(\mathbb{Z})$ is injective. If \mathcal{F} was surjective, then by open mapping theorem \mathcal{F}^{-1} is bounded. However $\left\|\mathcal{F}^{-1}\left(\hat{D}_{m}\right)\right\|_{1}=$ $\left\|D_{m}\right\|_{1} \rightarrow \infty$ as $m \rightarrow \infty$ whist $\left\|\hat{D}_{m}\right\|_{C_{0}(\mathbb{Z})} \equiv 1$.

