PROBLEM SET 7

JIAHAO HU

Problem 1. Suppose $f \in L^p(\mathbb{R})$. If there exists $h \in L^p(\mathbb{R})$ such that

$$\lim_{y \to 0} \|y^{-1}(f^{-y} - f) - h\|_p = 0,$$

we call h the strong L^p derivative of f and write h = df/dx. If $f \in L^p(\mathbb{R}^n)$, L^p derivatives of f are defined similarly. If p and q are conjugate exponents, $f \in L^p$, $g \in L^q$, and the L^p derivative $\partial_j f$ exists, then prove $\partial_j (f * g)$ exists in the ordinary sense and equals $(\partial_j f) * g$.

Proof. Suppose $f \in L^p(\mathbb{R})$ and h is the strong L^p derivative of f. Then by Prop 8.8 we have

$$||y^{-1}[(f*g)^{-y} - f*g] - h*g||_{u} = ||[y^{-1}(f^{-y} - f) - h)]*g||_{u}$$

$$\leq ||y^{-1}(f^{-y} - f) - h)||_{p}||g||_{q} \to 0 \quad \text{as } y \to 0$$

So h * g is the derivative of f * g in the ordinary sense. Similar for $f \in L^p(\mathbb{R}^n)$. \Box

Problem 2. Let $\phi \in L^1(\mathbb{R}^n)$ satisfy $|\phi(x)| \leq C(1+|x|)^{-n-\epsilon}$ for some $C, \epsilon > 0$, and $\int \phi(x)dx = a$. For t > 0, $\phi_t(x) = t^{-n}\phi\left(\frac{x}{t}\right)$. If $f \in L^p$ define the ϕ -maximal function of f to be $M_{\phi}f(x) = \sup_{t>0} |f * \phi_t(x)|$. The Hardy-Littlewood maximal function Hf is $M_{\phi}|f|$ where ϕ is the characteristic function of the unit ball, divided by the volume of the ball. Show that there is a constant C, independent of f, such that $M_{\phi}f \leq CHf$.

Proof. On the region $|y| \leq t$, we have $|\phi_t(y)| \leq \frac{C}{t^n}$, therefore

$$\int_{|y| \le t} |f(x-y)| \cdot |\phi_t(y)| dy \le \frac{C}{t^n} \int_{|y| \le t} |f(x-y)| dy$$
$$= \frac{C\rho}{m(B(0,t))} \int_{|y| \le t} |f(x-y)| dy \le C\rho \cdot Hf(x)$$

where $\rho = m(B(0,t))/t^n$ is a constant depending only on n. On the region $2^k t \leq |y| \leq 2^{k+1}t$, we have $|\phi_t(y)| \leq \frac{C}{t^n} \cdot 2^{-k(n+\epsilon)} = \frac{C\rho \cdot 2^{n-k\epsilon}}{m(B(0,2^{k+1}t))}$, therefore

$$\begin{split} \int_{2^{k}t \leq |y| \leq 2^{k+1}t} |f(x-y)| \cdot |\phi_t(y)| dy &\leq \frac{C\rho \cdot 2^{n-k\epsilon}}{m(B(0,2^{k+1}t))} \int_{|y| \leq 2^{k+1}t} |f(x-y)| dy \\ &\leq C\rho \cdot 2^{n-k\epsilon} \cdot Hf(x) \end{split}$$

Hence

$$M_{\phi}f \le (C\rho + \sum_{k=0}^{\infty} C\rho 2^{n-k\epsilon})Hf.$$

Problem 3. Young's inequality shows that L^1 is a Banach algebra with convolution as multiplication.

- (1) If \mathcal{I} is an ideal in the algebra L^1 , prove that its closure is, also.
- (2) If $f \in L^1$, the smallest closed ideal in L^1 containing f is the smallest closed subspace of L^1 containing translates of f.
- *Proof.* (1) It is clear $\overline{\mathcal{I}}$ is a subspace since \mathcal{I} is. Take any $f \in \overline{\mathcal{I}}, g \in L^1$, we can find $f_n \in \mathcal{I}$ with $f_n \to f$ in L^1 . Notice by Young's inequality $\|f_n * g - f * g\|_1 \leq \|f_n - f\|_1 \cdot \|g\|_1$ therefore $f_n * g \to f * g$ in L^1 , so $f * g \in \overline{\mathcal{I}}$. This proves $\overline{\mathcal{I}}$ is an ideal.
 - (2) Let I, J denote the smallest closed ideal containing f and the smallest closed subspace containing translate of f respectively. We note to show I ⊂ J, it suffices to show f*g ∈ J for all g ∈ C_c, since a typical element in I is a limit of linear combinations of functions of the form f * g for some g ∈ C_c and J is a closed subspace. For g ∈ C_c, f * g(x) is approximated by Riemann sum ∑ f(x y_j)g(y_j)∆y_j = ∑ τ_{y_j}f(x)g(y_j)∆y_j, this means f * g is a pointwise limit of function ∑ τ_{y_j}f(x)g(y_j)∆y_j ∈ J. To see this is also an L¹ convergence, we notice |∑ τ_{y_j}fg(y_j)∆y_j| ≤ ∑ |τ_{y_j}f||g(y_j)|∆y_j ≤ 2|f| * |g| since ∑ |τ_{y_j}f||g(y_j)|∆y_j converges to |f|*|g| for sufficiently fine partitions, then the L¹ convergence follows from dominated convergence theorem. So by closeness of J, we have f * g ∈ J and thus I ⊂ J. On the other hand, similarly to show J ⊂ I it suffices to check translations of f, τ_yf ∈ I. But this is clear since τ_yf is the L¹ limit of functions f * τ_yφ_t ∈ I for any approximate identity {φ_t}.

Problem 4. Show that if $f \in L^1(\mathbb{R}^n)$, f is continuous at 0, and $\hat{f} \ge 0$, then $\hat{f} \in L^1$.

Proof. Choose $\Phi \ge 0$ as in Theorem 8.35(c), and denote $f^t(x) = \int \hat{f}(\xi) \Phi(t\xi) e^{2\pi i \xi \cdot x} d\xi$. Since f is continuous at 0, 0 is in the Lebesgue set of f, thus by Theorem 8.35(c) we have $\lim_{t \to 0} f^t(0) = f(0)$. Since $\hat{f} \ge 0$, by Fatou's lemma

$$\|\hat{f}\|_{1} = \int \lim_{t \to 0} \hat{f}(\xi) \Phi(t\xi) d\xi \le \lim_{t \to 0} \int \hat{f}(\xi) \Phi(t\xi) d\xi = \lim_{t \to 0} f^{t}(0) = f(0).$$

Problem 5. Let f be a function on \mathbb{T}^1 and $A_r f$ the rth Abel mean of the Fourier series of f. Check that

(1) $A_r f = f * P_r$ where $P_r(x) = \sum_{-\infty}^{\infty} r^{|k|} e^{2\pi i k x}$ is the Poisson kernel for \mathbb{T}^1 . (2) $P_r(x) = \frac{1 - r^2}{1 + r^2 - 2r \cos 2\pi x}$.

Proof. (1) This is direct.

$$f * P_r(x) = \int f(y) \Big(\sum_k r^{|k|} e^{2\pi i k(x-y)} dy = \sum_k r^{|k|} e^{2\pi i kx} \hat{f}(k) = A_r f(x).$$

(2) This is also direct.

$$P_r(x) = \sum_{k=0}^{\infty} r^k e^{2\pi i k x} + \sum_{k=1}^{\infty} r^k e^{-2\pi i k x} = \frac{1}{1 - r e^{2\pi i x}} + \frac{r e^{-2\pi i x}}{1 - r e^{-2\pi i x}} = \frac{1 - r^2}{1 - 2r \cos(2\pi x) + r^2}$$

Problem 6. Given $f \in L^1(\mathbb{T}^1)$, let $S_m f(x) = \sum_{-m}^m \hat{f}(k) e^{2\pi i k x}$ and

$$\sigma_m f(x) = \sum_{-m}^m \hat{f}(k) \left(1 - \frac{|k|}{m+1}\right) e^{2\pi i k x}.$$

Prove the following.

- (1) $\sigma_m f = \frac{1}{m+1} \sum_0^m S_k f.$ (2) If D_k is the kth Dirichlet kernel, we have $\sigma_m f = f * F_m$ where $F_m = \frac{1}{m+1} \sum_0^m D_k$. F_m is the mth Fejér kernel on \mathbb{T}^1 .

(3)
$$F_m(x) = \frac{\sin^2(m+1)\pi x}{(m+1)\sin^2\pi x}$$
.

Proof.
$$(1)$$
 We have

$$\frac{1}{m+1}\sum_{k=0}^{m}S_kf(x) = \frac{1}{m+1}\sum_{k=0}^{m}\sum_{n=-k}^{k}e^{2\pi inx} = \frac{1}{m+1}\sum_{k=0}^{m}(m+1-|k|)e^{2\pi inx}$$
$$=\sum_{k=0}^{m}(1-\frac{|k|}{m+1})e^{2\pi ikx} = \sigma_m f(x).$$

(2) We have

$$f * F_m(x) = \int f(y) F_m(x-y) dy = \frac{1}{m+1} \int f(y) \sum_{k=0}^m \sum_{n=-k}^k e^{2\pi i n(x-y)} dy$$
$$= \frac{1}{m+1} \sum_{k=0}^m \sum_{n=-k}^k \left(\int f(y) e^{-2\pi i ky} dy \right) e^{2\pi i kx} = \frac{1}{m+1} \sum_{k=0}^m \sum_{n=-k}^k \hat{f}(k) e^{2\pi i kx}$$
$$= \frac{1}{m+1} \sum_{k=0}^m S_k f(x) = \sigma_m f(x).$$

(3) We have

$$F_m(x) = \frac{1}{m+1} \sum_{k=0}^m D_k(x) = \frac{1}{m+1} \sum_{k=0}^m \frac{\sin(2k+1)\pi x}{\sin(\pi x)}$$
$$= \frac{1}{m+1} \frac{1}{\sin(\pi x)} \operatorname{Im}\left(\sum_{k=0}^m e^{(2k+1)i\pi x}\right) = \frac{1}{m+1} \frac{1}{\sin(\pi x)} \operatorname{Im}\left(e^{(m+1)i\pi x} \frac{\sin((m+1)\pi x)}{\sin(\pi x)}\right)$$
$$= \frac{1}{m+1} \frac{\sin^2((m+1)\pi x)}{\sin^2(\pi x)}.$$

Problem 7. Prove the following.

(1) If D_m is the mth Dirichlet kernel, $||D_m||_1 \to \infty$ as $m \to \infty$. (2) The Fourier transform is not surjective from $L^1(\mathbb{T}^1)$ to $C_0(\mathbb{Z})$.

$$\begin{aligned} Proof. \qquad (1) \text{ Notice } |D_m(x)| &\geq \frac{2m+1}{k\pi} |\sin((2m+1)\pi x)| \text{ for } x \in \left(\frac{k}{2m+1}, \frac{k+1}{2m+1}\right), \text{ so} \\ \int_0^1 |D_m| &\geq \sum_{k=0}^{2m} \frac{2m+1}{k\pi} \int_{\frac{k}{2m+1}}^{\frac{k+1}{2m+1}} |\sin((2m+1)\pi x)| &= \frac{2}{\pi^2} \sum_{k=0}^{2m} \frac{1}{k+1} \xrightarrow{m \to \infty} \infty. \end{aligned}$$

JIAHAO HU

(2) By Fourier inversion, $\mathcal{F} : L^1(\mathbb{T}^1) \to C_0(\mathbb{Z})$ is injective. If \mathcal{F} was surjective, then by open mapping theorem \mathcal{F}^{-1} is bounded. However $\|\mathcal{F}^{-1}(\hat{D}_m)\|_1 = \|D_m\|_1 \to \infty$ as $m \to \infty$ whist $\|\hat{D}_m\|_{C_0(\mathbb{Z})} \equiv 1$.

4